Teoriang chaos

Ibat king Wikipedia
Lundag ka king: pamaglibut, paintunan
Metung a grafica o diagrama ning Lorenz attractor para kareng alagang r = 28, σ = 10, b = 8/3

Ing Teoriang chaos o Chaos theory metung yang sanga ning matematica a manigaral king pangimut da reng mapilang dynamical system a mapaliaring misnang sensitivo kareng kabilian king umpisa o initial conditions. Ining panga-sensitivo mipalaguan butterfly effect. Uli na niting panga-sensitivo, a lalto antimong daragul nang daragul a pamandagul ning pamagkamali (exponential growth of error), lalto yang balamu random (alang kapakayan o direccion) ing pangimut ning sistema. Ing buri nang sabian niti, deng mangalating pamialiwa king umpisa, magdala yang misnang dagul a pamialiwa panga-wakas, agiang king makuyad mung kapanaunan. Balamu random ing pangimut ning sistema, agiang deterministic ya iti, at ganap lang bunga o madi-determina da reng kabilian da potang purmeru deng maliliari keng paintungulan, a alang bitasang elementung random a maki papil. Ining pangimut, ausan dang deterministic chaos, o king makuyad a salita, chaos.

Maliari ya muring akit ing pangimut a chaotic o chaotic behavior kareng sistemang natural, alimbawa king panaun (weather). Maliari yang isplica iti king metung a pamaglarawan o analysis ning chaotic mathematical model a pekakatawan ning makanian a sistema. Sisiasatan ning quantum chaos ing kaugnayan ning chaos ampong .

Lon la murin


Kasulatang cientifico


Libru king escuela (textbooks)

  • Alligood, K. T. (1997). Chaos: an introduction to dynamical systems. Springer-Verlag New York, LLC. ISBN 0-387-94677-2. 
  • Baker, G. L. (1996). Chaos, Scattering and Statistical Mechanics. Cambridge University Press. ISBN 0-521-39511-9. 
  • Badii, R.; Politi A. (1997). "Complexity: hierarchical structures and scaling in physics". Cambridge University Press. ISBN 0521663857. 
  • Devaney, Robert L. (2003). An Introduction to Chaotic Dynamical Systems, 2nd ed,. Westview Press. ISBN 0-8133-4085-3. 
  • Gollub, J. P.; Baker, G. L. (1996). Chaotic dynamics. Cambridge University Press. ISBN 0-521-47685-2. 
  • Gutzwiller, Martin (1990). Chaos in Classical and Quantum Mechanics. Springer-Verlag New York, LLC. ISBN 0-387-97173-4. 
  • Hoover, William Graham (1999,2001). Time Reversibility, Computer Simulation, and Chaos. World Scientific. ISBN 981-02-4073-2. 
  • Kiel, L. Douglas; Elliott, Euel W. (1997). Chaos Theory in the Social Sciences. Perseus Publishing. ISBN 0-472-08472-0. 
  • Moon, Francis (1990). Chaotic and Fractal Dynamics. Springer-Verlag New York, LLC. ISBN 0-471-54571-6. 
  • Ott, Edward (2002). Chaos in Dynamical Systems. Cambridge University Press New, York. ISBN 0-521-01084-5. 
  • Strogatz, Steven (2000). Nonlinear Dynamics and Chaos. Perseus Publishing. ISBN 0-7382-0453-6. 
  • Sprott, Julien Clinton (2003). Chaos and Time-Series Analysis. Oxford University Press. ISBN 0-19-850840-9. 
  • Tél, Tamás; Gruiz, Márton (2006). Chaotic dynamics: An introduction based on classical mechanics. Cambridge University Press. ISBN 0-521-83912-2. 
  • Tufillaro, Abbott, Reilly (1992). An experimental approach to nonlinear dynamics and chaos. Addison-Wesley New York. ISBN 0-201-55441-0. 
  • Zaslavsky, George M. (2005). Hamiltonian Chaos and Fractional Dynamics. Oxford University Press. ISBN 0-198-52604-0. 

Obrang semitechnical ampong popular

  • Ralph H. Abraham and Yoshisuke Ueda (Ed.), The Chaos Avant-Garde: Memoirs of the Early Days of Chaos Theory, World Scientific Publishing Company, 2001, 232 pp.
  • Michael Barnsley, Fractals Everywhere, Academic Press 1988, 394 pp.
  • Richard J Bird, Chaos and Life: Complexity and Order in Evolution and Thought, Columbia University Press 2003, 352 pp.
  • John Briggs and David Peat, Turbulent Mirror: : An Illustrated Guide to Chaos Theory and the Science of Wholeness, Harper Perennial 1990, 224 pp.
  • John Briggs and David Peat, Seven Life Lessons of Chaos: Spiritual Wisdom from the Science of Change, Harper Perennial 2000, 224 pp.
  • Lawrence A. Cunningham, From Random Walks to Chaotic Crashes: The Linear Genealogy of the Efficient Capital Market Hypothesis, George Washington Law Review, Vol. 62, 1994, 546 pp.
  • Leon Glass and Michael C. Mackey, From Clocks to Chaos: The Rhythms of Life, Princeton University Press 1988, 272 pp.
  • James Gleick, Chaos: Making a New Science, New York: Penguin, 1988. 368 pp.
  • John Gribbin, Deep Simplicity,
  • L Douglas Kiel, Euel W Elliott (ed.), Chaos Theory in the Social Sciences: Foundations and Applications, University of Michigan Press, 1997, 360 pp.
  • Arvind Kumar, Chaos, Fractals and Self-Organisation; New Perspectives on Complexity in Nature , National Book Trust, 2003.
  • Hans Lauwerier, Fractals, Princeton University Press, 1991.
  • Edward Lorenz, The Essence of Chaos, University of Washington Press, 1996.
  • Chapter 5 of Alan Marshall (2002) The Unity of nature, Imperial College Press: London
  • Heinz-Otto Peitgen and Dietmar Saupe (Eds.), The Science of Fractal Images, Springer 1988, 312 pp.
  • Clifford A. Pickover, Computers, Pattern, Chaos, and Beauty: Graphics from an Unseen World , St Martins Pr 1991.
  • Ilya Prigogine and Isabelle Stengers, Order Out of Chaos, Bantam 1984.
  • Heinz-Otto Peitgen and P. H. Richter, The Beauty of Fractals : Images of Complex Dynamical Systems, Springer 1986, 211 pp.
  • David Ruelle, Chance and Chaos, Princeton University Press 1993.
  • Ivars Peterson, Newton's Clock: Chaos in the Solar System, Freeman, 1993.
  • David Ruelle, Chaotic Evolution and Strange Attractors, Cambridge University Press, 1989.
  • Peter Smith, Explaining Chaos, Cambridge University Press, 1998.
  • Ian Stewart, Does God Play Dice?: The Mathematics of Chaos , Blackwell Publishers, 1990.
  • Steven Strogatz, Sync: The emerging science of spontaneous order, Hyperion, 2003.
  • Yoshisuke Ueda, The Road To Chaos, Aerial Pr, 1993.
  • M. Mitchell Waldrop, Complexity : The Emerging Science at the Edge of Order and Chaos, Simon & Schuster, 1992.

Suglung palual

Ing Wikimedia Commons atin yang mediang maki kaugnayan kang/king: